Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions

نویسندگان

  • Nora Freyer
  • Selina Greuel
  • Fanny Knöspel
  • Florian Gerstmann
  • Lisa Storch
  • Georg Damm
  • Daniel Seehofer
  • Jennifer Foster Harris
  • Rashi Iyer
  • Frank Schubert
  • Katrin Zeilinger
چکیده

The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP) used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP (p < 0.05) and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP (p < 0.0001), indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP (p < 0.05), suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laminar-flow immediate-overlay hepatocyte sandwich perfusion system for drug hepatotoxicity testing.

Drug hepatotoxicity testing requires in vitro hepatocyte culture to maintain the long-term and stable liver specific functions. We developed a drug testing platform based on laminar-flow immediate-overlay hepatocyte sandwich perfusion culture. The immediate-overlay sandwich (collagen-coated porous polymeric membrane as top overlay) protects the cells and integrity of the top collagen matrix fro...

متن کامل

A robust high-throughput sandwich cell-based drug screening platform.

Hepatotoxicity evaluation of pharmaceutical lead compounds in early stages of drug development has drawn increasing attention. Sandwiched hepatocytes exhibiting stable functions in culture represent a standard model for hepatotoxicity testing of drugs. We have developed a robust and high-throughput hepatotoxicity testing platform based on the sandwiched hepatocytes for drug screening. The platf...

متن کامل

Perfused multiwell plate for 3D liver tissue engineering.

In vitro models that capture the complexity of in vivo tissue and organ behaviors in a scalable and easy-to-use format are desirable for drug discovery. To address this, we have developed a bioreactor that fosters maintenance of 3D tissue cultures under constant perfusion and we have integrated multiple bioreactors into an array in a multiwell plate format. All bioreactors are fluidically isola...

متن کامل

of SignAling PAthwAyS live Cell imAging

to efficiently expand cells and develop robust cell-based models for in vitro drug screening, in vivo-like cell culture conditions — such as dynamic perfusion and 3d growth — are required. here, we show results on a study in which we cultured CompoZr® Zinc finger nuclease-modified U2oS osteosarcoma cells under 3d perfusion cell culture conditions. CompoZr Zinc finger nuclease (Zfn) technology w...

متن کامل

Multifunctional Bioreactor System for Human Intestine Tissues

The three-dimensional (3D) cultivation of intestinal cells and tissues in dynamic bioreactor systems to represent in vivo intestinal microenvironments is essential for developing regenerative medicine treatments for intestinal diseases. We have previously developed in vitro human intestinal tissue systems using a 3D porous silk scaffold system with intestinal architectures and topographical fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2018